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ABSTRACT 

The creation of crowd-sourced content in learning systems is a 

powerful method for adapting learning systems to the needs of a 

range of teachers in a range of domains, but the quality of this 

content can vary. This study explores linguistic differences in 

teacher-created problem content in ASSISTments using a 

combination of discovery with models and correlation mining. 

Specifically, we find correlations between semantic features of 

mathematics problems and indicators of learning and engagement, 

suggesting promising areas for future work on problem design. 

We also discuss limitations of semantic tagging tools within 

mathematics domains and ways of addressing these limitations. 
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1. INTRODUCTION 
As content is developed at scale for online learning systems, 

particularly systems that leverage content developed by large 

numbers of authors, it becomes important to distinguish between 

problems which are well-written and conducive to learning and 

those which are poorly worded or otherwise difficult to 

understand. Crowd-sourced content, where content is authored by 

a broader community [21], is a powerful and scalable method of 

content creation, which can be used to quickly develop and deploy 

new content and curricula ([46], [17]).  

For this reason, it is critical that an equally scalable method of 

analyzing problem quality be developed, to prevent learning 

platforms that leverage crowd-sourced content from becoming 

dominated by ineffective content. In other platforms such as 

Wikipedia the quality of crowd-sourced materials is improved 

through substantial coordination between contributors [20]. 

However, there is relatively little work evaluating crowd-sourced 

learning content at scale. In contrast with more traditional 

educational measurement (from tests), where determining items’ 

ability to discriminate student knowledge is a standard part of 

item analysis [11], there has been less attention to this problem for 

online learning systems. While some researchers have attempted 

to determine which hints are more effective [18], or which 

problems are associated with more learning [14], these efforts 

have focused on what, but not why, particular system features can 

impact students, limiting their degree of general use. A more 

theoretical approach was taken by [49] where a design space of 

over 70 features characterizing Cognitive Tutor lessons was 

distilled and correlated with an automated gaming the system 

detector. However, this work identified the characteristics of tutor 

lessons using hand-coding, a method that is infeasible for larger 

datasets, and was limited to the relatively narrow space of 

problems designed by professional educational developers. 

An alternative method for the analysis of the design of content in 

large-scale educational systems is text mining. There is a 

considerable amount of small-scale research on linguistic features 

that impact reading in mathematical contexts [47], but as [16] 

point out, many of the traditional readability indices used to study 

language at scale are limited in the features they consider. As a 

result, many early studies did not find a relationship between 

readability and performance in mathematics word problems [48].  

As more advanced linguistic tools have become available, large-

scale investigations of mathematics language have become more 

fruitful. For example, [44] have used LIWC [37] and CohMetrix 

[15] to study the effects of linguistic properties of mathematics 

problems ([44], [45]). [45] found that third-person singular 

pronouns (e.g., he, she) are significantly associated with correct 

answers and fewer hint requests in Cognitive Tutor problems. 

They found positive correlations between the use of work-related 

terms and learning, and negative correlations between the use of 

terms related to social constructs and learning.  These findings 

highlight the potential value of linguistic features for better 

understanding learning, as well as the need to explore a wider 

range of semantic categories in a broader range of mathematics 

content areas.  

In this paper, we use a discovery with models approach, 

generating prediction labels from automated detectors of student 

learning and engagement that were developed for the 

ASSISTments online learning system ([2], [32]). We build on 

[46]’s approach of using text mining software and text elements, 

such as HTML tags and Unicode characters, to distill features 

from a corpus of mathematics problems. We then use correlation 
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mining approaches to identify links between these features and 

our labels of student engagement and learning as a means for 

determining which combinations of linguistic features are 

associated with particularly effective problems. 

1.1 ASSISTments 
The current study uses data collected from the ASSISTments 

system. ASSISTments is an online intelligent tutoring system 

used by over 50,000 students annually for middle-school 

mathematics. It provides both formative and summative 

assessment as well as extensive student support (assistment) and 

detailed teacher reports. It also facilitates research using 

randomized controlled trials (RCTs) that allow researchers to 

conduct studies without interfering with instructional time [17].  

Within the system, students are assigned problem sets that may 

vary on several dimensions. Problem sets can be differentiated in 

terms of how problems are assigned: (a) In Complete All problem 

sets, problem order may be randomized; students must correctly 

answer all of the questions assigned and cannot advance to the 

next problem unless they have answered correctly. (b) In If-Then-

Else problem sets, students must correctly answer a specified 

percentage of questions correctly (default is 50%) in order to pass, 

or else they may be given additional problems. (c) Finally, in Skill 

Builder problem sets, students must get 3 consecutive correct 

answers in order to pass, thus allowing students who show 

mastery to move on quickly to new assignments while providing 

struggling students with extended practice. 

The purpose of the current study is to evaluate the semantic 

properties and HTML metadata (which may carry semantic 

meaning) of problems authored in ASSISTments. Many have 

been vetted by the ASSISTments expert team, but others (76% as 

of 2014) were created by teachers themselves [17]. ASSISTments 

provides scripted templates, which allow teachers to customize 

problem sets for specific topics. Therefore, finding ways to 

identify meaningful differences in teachers’ problem design is an 

important area of research. 

2. DATA & METHODS 
In this paper, we analyze 179,908 problems within the 

ASSISTments system, most developed by teachers. We study 

these problems using the features of the problems themselves, in 

combination with data from the log files of 22,225 students who 

used ASSISTments during the 2012-13 school year. We applied 

models from previous research on engagement and learning to 

these students’ log files in order to determine how these constructs 

are associated with features of the design of the problems, 

developed through linguistic analysis and other data about the 

problems. In doing this, we excluded from consideration features 

that had been previously used within the learning and engagement 

models described below, to prevent overfitting. 

2.1 Learning & Engagement Measures 
Learning and engagement were assessed automatically, using 

detectors or models of these constructs.  

2.1.1 Student Learning 
Student learning was assessed by fitting the moment-by-moment 

learning model to the data [2]. The moment-by-moment learning 

model (MBMLM) attempts to infer the specific effect of each 

learning opportunity on a student’s overall mastery. We used [2]’s 

look-ahead-two probabilistic approach, which assumes that 

learning can occur at multiple points along a student’s trajectory 

of learning a skill, rather than [43]’s approach which assumes a 

single moment of learning. We also choose this formulation 

because it explicitly analyzes future performance, allowing us to 

focus on cases where students perform better than expected after 

encountering a particular problem. Using the MBMLM allows us 

to isolate the average learning associated with specific problems 

within the data and compare these averages to other problems that 

either lack or have particular features of interest. 

2.1.2 Automated Detectors of Engagement 
Detectors of student engagement were developed using data from 

in situ classroom observations, conducted by experts certified in 

the Baker Rodrigo Ocumpaugh Monitoring Protocol (BROMP 

2.0). The protocol is enforced by HART, an Android application 

designed specifically for the BROMP and freely available for 

non-commercial research [33], which enforces the protocol while 

facilitating data collection. 

Upon completion of the observations, data mining techniques 

were then employed to provide models of each construct that were 

cross-validated at the student level. In this paper, affective models 

developed for three different populations of students were applied, 

matching urban, suburban, and rural models to student data based 

on the location of their schools, in order to ensure population 

validity [32]. A detailed description of the features and algorithms 

used in these detectors is given in [32] and [34]. 

2.1.3 Applying Across-Student Measures of Learning 

& Engagement to Individual Problems 
In this paper, both the MBML model and the engagement models 

were used as indicators of problem effectiveness. This section 

describes how these models were aggregated across the 179,908 

problems and 22,225 students in this study. The formulation of the 

MBMLM in [2] is calculated once for each problem, at the time of 

the first attempt, and there is only one estimate per problem. 

Therefore, MBML was estimated for each student based on the 

sequence in which the problem was seen. Problem-level measures 

were then produced by averaging the MBML values across all 

students who saw a given problem. 

The affective models were applied by segmenting the data at 20-

second intervals (matching the original approach used to develop 

the detectors), and then applying each model to each segment. 

Confidence values for each detector was averaged twice at the 

problem level: first for each student (in order to avoid biasing the 

estimates in favor of the affect experienced by students who spent 

longer working the problem), then across all students who had 

seen that problem. This resulted in five measures per problem 

(average boredom, confusion, engaged concentration, frustration, 

and gaming), which we used, along with MBMLM outcomes, as 

our dependent variables.  

2.2 Feature Engineering 
A number of different design features may influence student 

learning and engagement. In this paper, we explore features of 

both the problem text and its meta-text. Specifically, we look at 

word counts, lexical category features generated by a semantic 

tagger, and features generated from the metadata connected to the 

problem, which provides us with a separate source of semantic 

data (e.g., the use of mathematical notation which would not be 

captured by a semantic tagger) as well as with information about 

its use of tables, images, formatting, bolded or emphasized text.  

2.2.1 Wmatrix Semantic Tags 
The semantic content of ASSISTments problems was analyzed 

with Wmatrix [39], a corpus analysis and comparison tool that 

parses text at a word and multi-word level. As of 2004, this 



included 42,300 single word entries and over 18,400 multi-word 

expressions [38]. Wmatrix has been used in a number of analyses, 

including work to tag and identify lexical patterns in ontology 

learning [13] and work to study how students self-explain when 

learning science content [12]. Its semantic tagger uses a semi-

hierarchical structure where all known words and multi-word 

units are classified into one of 21 lexical fields, represented with 

letters by its tagging system. These lexical fields may (or may not) 

be further subdivided in up to three different levels, which are 

represented in what we will refer to as the base tag.  

Figure 1. WMatrix tagging system. 

 

Within the lexical tag, we will refer to the lexical field 

(alphabetical) and the 1st, 2nd, and 3rd order subfields (numeric) as 

the base tag. Additional information about antonyms (black vs. 

white), comparatives (better, worse, more confusing, etc.), 

superlatives (best, worst, most confusing, etc.), gender (masculine, 

feminine, and neuter), and anaphoric status (i.e., contextual 

reference), may or may not be appended to a base tag. Wmatrix 

documents 234 distinct base tags, and represents a large number 

of additional possible labels through appendices  

In the ASSISTments data, 442 distinct Wmatrix tags (base + 

appendices) were identified. These tags were most likely to fall 

under 7 lexical fields: General & Abstract Terms (A), Numbers & 

Measurement (N), Social Actions, States, & Processes (S), 

Psychological Actions, States, & Processes (X), Names & 

Grammatical Words (Z), Money & Commerce in Industry (I), and 

Time (T).  

2.2.2 Accommodating Known Wmatrix Limitations 
Although Wmatrix has been evaluated for its effectiveness in a 

range of genres, domains, and historical periods [38], semantic 

taggers can have a number of limitations when applied to highly 

specialized domains ([28], [24]; [36]; [30]; [27]). For example, 

research has shown that words which contain more than one unit 

of meaning create challenges for taggers that apply only one label 

per word [41]. As a result, semantic taggers which work 

specifically with scientific language have become an area of 

research interest ([1], [10]), but the language of mathematics has 

not yet been well-developed.  

As such, features generated by Wmatrix must be carefully 

checked within this data set and may need to be supplemented by 

domain-specific tags. For example, we found several Wmatrix 

tags that erroneously tagged high-frequency items that appeared in 

ASSISTment’s instructions to students, including problems that 

instructed students to enter fractions in a specific format in order 

to receive credit or which told students that they had 3 attempts 

left. Wmatrix treated many of these words (e.g., enter and left) as 

an indication of physical movement (M1, as in entering a building 

or turning left). A few erroneous tags also appeared to result from 

the development of Wmatrix as a tool for British English. For 

instance, ASSISTments users, who are primarily American 

English speakers, wrote a number of problems involving a person 

named Randy, whose name was automatically (and erroneously) 

tagged as involving sexual content. 

To mitigate this issue, significant correlations were carefully 

inspected individually. This approach has been found to be useful 

in previous studies where semantic taggers were applied to new 

domains [12]. While the large size of the ASSISTments corpus 

limits our ability to address this problem completely, thorough 

efforts were made to examine and understand relationships 

discovered through the use of Wmatrix. In instances where 

Wmatrix applied a tag involving the wrong sense of a word for the 

context in which it was used, we have specifically noted this 

difference and what sense of a word or words the tag is capturing 

within ASSISTments. 

2.2.3 Math Symbols and Other Textual Metadata 
In addition to generating features with Wmatrix, we also 

generated features based on the metadata of each problem. We 

were primarily concerned with identifying Unicode characters that 

are semantically meaningful in mathematics contexts. In the 

ASSISTments corpus, we labeled 68 symbols, such as those for 

integrals, mean, standard deviation, and exponents. These 

domain-specific symbols present unique challenges to the 

teaching and learning of mathematics [40], but are not detected by 

most lexical analysis tools, which have not generally been 

developed for mathematics domains. In addition, we identified 14 

HTML tags that were used to format ASSISTments problems, 

including tags used for boldface, italics, paragraph structure, and 

images. Because many of these functions can also alter the 

semantics of a problem, we also generated features that reflect 

these uses of HTML in problem metadata. These features were 

generated by counting the number of times that each HTML code 

was used in a problem, in parallel to the application of the 

Wmatrix tags discussed in previous sections. 

3. RESULTS 
To explore the relationship between these problem features and 

the BROMP-trained measures of engagement and learning, we 

correlated each problem feature to each predicted variable. We 

selected Spearman’s ρ as our correlation coefficient because of its 

increased robustness when correlating non-normal data as 

compared to other parametric coefficients such as Pearson’s R 

[50]. Additionally, with such a high number of comparisons being 

conducted it was necessary to adjust our significance criterion to 

account for the possibility of tests being incorrectly identified as 

significant. The Benjamini and Hochberg post-hoc procedure [4] 

was used to control for these false discoveries. A table of results 

by dependent variable is presented in Table 1, which also provides 

the average confidence level for each detector as a baseline 

measure for this data. 

 

Table 1. N of significant features by outcome measure. 

Outcome Measure 

Avg 

Conf. 

Total 

Sig 

Sig w/ 

|ρ| > 

0.05 

Sig w/ 

|ρ| > 

0.10 

Bored 0.16 118 16 0 

Engaged Concentration 0.46 251 62 14 

Confusion 0.03 285 60 5 

Frustration 0.04 216 36 7 

Gaming the System 0.02 257 43 5 
 

Of the possible 2730 correlations, 1127 (41.3%) were statistically 

significant after controlling for multiple comparisons using 

Benjamini & Hochberg’s post-hoc control. More features were 

significantly correlated with confusion than any other outcome 

measure, but large numbers of features were also correlated with 



gaming the system, engaged concentration, frustration and 

MBML. Boredom was correlated with fewer features, overall, 

than either of the other outcome measures. These broad findings 

suggest the potential for finding semantic features that may help 

to provide templates for improving the design of word problems. 

3.1 Features associated with all outcome measures 
In the following sections, we examine the relationships between 

our features and the individual outcome measures, but in order to 

provide a broad summary of which types of features had the 

largest effects, the absolute value of Spearman ρ was averaged 

across all six outcome measures for each feature in this study. 

Among the 64 features that were signifcantly correlated with all 

six outcomes,  the 10 with the highest ρ average (shown in Table 

2) were drawn from 5 lexical fields: Grammatical Bin (Z), 

General Terms (A), Time (T), Speech Acts (Q), and Numbers & 

Measurement (N). One HTML tag (<p>, paragraph) was also 

significant. 

Table 2. 10 largest correlated features by average sig. |ρ| 

Tag 
Avg 
|ρ| 
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Z5 0.116 0.193 0.086 -0.165 0.084 0.105 0.060 

Z5mwu 0.104 0.114 0.034 -0.040 0.135 0.162 0.140 

A12- 0.101 0.114 -0.027 0.030 0.086 0.153 0.198 

T3- 0.091 0.084 -0.034 0.055 0.074 0.144 0.153 

Q2.2 0.080 0.043 0.083 -0.162 0.068 0.071 0.051 

T1.1.2 0.076 0.076 -0.051 0.031 0.067 0.116 0.116 

<p>  0.071 0.149 0.054 -0.127 0.015 0.064 -0.015 

N1 0.069 0.061 0.076 -0.077 0.082 0.080 0.035 

A5.4+ 0.066 -0.028 0.059 -0.130 0.074 0.038 -0.069 

Z6 0.056 0.108 0.020 -0.034 -0.077 -0.032 0.071 

 

Spearman’s ρ is also shown for individual outcome measures, 

allowing us to examine the effects of these features in greater 

detail. Table 2 shows that WMatrix’s Speech Acts tag (Q2.2, e.g., 

answer, account, or speak out) is correlated with small increases in 

learning, but is also positively correlated with increased boredom 

and gaming and decreased concentration. The Wmatrix features 

described as Grammatical Bin (words such as as, but, in order to) 

are also correlated with increased learning, boredom, and gaming. 

Correspondingly, they are also negatively associated with engaged 

concentration, illustrating the complicated interactions at play in 

this data and the importance of considering multiple outcomes 

when exploring design effects. 

4. Results by Outcome Measure 
While some interactions are complicated, we also see many 

features correlate in logical patterns. For example, features that 

are positively associated with boredom are often also negatively 

associated with engaged concentration, and vice-versa. Likewise, 

features associated with confusion are also associated with 

frustration. The remainder of this section discusses these patterns 

in greater detail, pairing outcome measures that are conceptually 

related (e.g., boredom and engaged concentration as well as 

MBML and gaming the system, which have shown to be inversely 

related in the past). Specifically, we will examine the ten features 

that are most negatively associated and the ten that are most 

positively associated with each outcome measure, discussing 

commonalities across outcome measures. 

4.1.1 Learning & Gaming the System  
The Spearman ρ values for the top ten features range from -0.078 

to 0.233 for MBML and from -.095 to 0.198 for gaming the 

system. Table 3 presents these results, highlighting features that 

correlate with both outcome measures. 

Table 3. Features most strongly associated with MBML and 

gaming the system 

 

Although gaming is an infrequent behavior, previous research has 

shown that it is linked to poorer learning ([7], [34]). Therefore the 

findings in Table 3 are somewhat surprising. We should expect 

gaming’s infrequency to limit overlap between the two categories, 

and expect them to show inverse relationships when present. 

Instead, A12- (words related to difficulty), Z5mwu (multiword 

grammatical units like as far as or for example), and N3.8+ 

(words related to higher speeds), are all associated with increased 

MBML and increased gaming behaviors. Likewise, semantically 

similar categories like N1mwu (multiword numbers) and N5+ 

(large quantities) are associated with lowered MBML and 

lowered rates of gaming behaviors.  

These anomalies might be due to the existence of problems that 

support learning but can be gamed relatively easily, or might 

suggest that particularly challenging problems lead to learning but 

also inspire gaming behavior. For example, A5.2+ (words 

associated with true) demonstrates the lowest correlation with 

learning, a result that is consistent with literature on the 

ineffectiveness of true/false questions [42]. Likewise Z8mwu 

(multiword pronouns, e.g., anything at all) is correlated with 

lower MBML, while Z8 (single word pronouns, e.g., it, my, and 

you) is correlated with increased gaming. These findings align 

with research showing that pronouns can be difficult to process 

cognitively (taxing working memory), as they require readers to 

infer their antecedents (the words that give them their meaning) 

from context ([25], [8], [22], [6]). This suggests that pronouns 

could inhibit learning by drawing mental resources away from 

mathematics task, perhaps inspiring some students to try to 

succeed with minimal cognitive effort.  

These findings highlight important considerations for researchers 

working to improve learning systems, including the need to 

consider multiple measures. For example, [44] found that 

pronouns are associated with correct answers and lowered hint 

use. It is highly likely that pronouns can have beneficial impacts 

on learning, particularly through [44]’s hypothesized mechanism 

of increased cohesiveness. However, if pronoun use in 

ASSISTments and Cognitive Tutor is comparable, our results 

suggest that some correct answers could have been achieved by 

guessing rather than by learning. 

TAG Semantic Description ρ TAG Semantic Description ρ

A5.2+ True/False -0.078 N5+ Quantities -0.095

S9 Religion & the supernatural -0.075 A10+ Open/Closed; Hiding/Hidden; Finding; Showing-0.092

A11.1+++ Important/Significant -0.066 X2.1 Thought/belief -0.084

A6.1+ Similar/Different -0.062 A2.1+ Modify, Change -0.082

G2.2+ General Ethics -0.059 S5+ Groups and affiliation -0.074

N3.2+++ Measurement: Size -0.059 N5.2+ Exceeding; waste -0.070

A3- Being -0.058 A5.4+ Authenticity -0.069

Z8mwu Pronouns etc. -0.054 T1 TIME GENERAL -0.069

N1mwu Numbers -0.051 N5 Quantities -0.067

X5.2+ Interest/boredom/excited/ennergetic -0.049 T2+ Time: Beginning and ending -0.067

A12- Easy/Difficult 0.114 A7+mwu Definite (+modals) 0.086

Z5mwu Grammatical bin 0.114 X2.4mwu Investigate/examine/test/search 0.087

Z99 Unmatched 0.114 N3.8+ Measurement: Speed 0.093

N3.3--- Measurement: Distance 0.115 Z8 Pronouns etc. 0.093

X2.2+ Knowledge 0.121 A12+++ Easy/Difficult 0.098

M7 Places (geographical & conceptual) 0.130 T1.1.2 Time: General: Present; Simultaneous 0.116

N3.8+ Measurement: Speed 0.142 X8+ Trying 0.140

<p>  HTML paragraph 0.149 Z5mwu Grammatical bin 0.140

Z5 Grammatical bin 0.193 T3- Time: Old, new and young; age 0.153

M1 Moving, coming, & going 0.223 A12- Easy/Difficult 0.198

LEARNING GAMING



Furthermore, if students are more tempted to game the system 

when presented with challenging problems, even though these are 

exactly the sort of problems needed to improve learning, then 

further research should explore whether or not these findings 

reflect two distinct different groups of students. It may be that 

some students need additional cognitive scaffolding or a 

motivational intervention in order to complete these problems 

without gaming, allowing them to learn as well as other students 

who are working through the curriculum in a more appropriate 

way. However, research has also shown that in some cases high 

achieving students also game the system, and the independent 

application of these models could be picking up on that trend, 

where students guess something that they actually know, but then 

correct this behavior in subsequent problems, which could cause 

the MBML model to perceive learning.  

4.1.2 Confusion & Frustration 
Confusion and frustration show considerable overlap, in line with 

prior theory on the relationship between these constructs ([9], 

[26]). As Table 4 shows, half (10) of the semantic features most 

strongly associated with one are also strongly associated with the 

other, including N6mwu (frequency of occurrence) which is 

negatively associated with both confusion and frustration. This 

corresponds with [44]’s findings that clear demarcations of time 

in mathematics problems can improve student outcomes.  

Table 4. Features most strongly associated with confusion and 

frustration

 
 

Notable semantic features within this pairing include Z5 and 

Z5mwu. Both capture what are known as grammatical bin, which 

includes prepositions (of, to, after, amid), conjunctions (and, or, 

but), certain adverbs (e.g., as, so, which, than, when), the 

infinitival maker (to + verb), determiners (e.g., a and the) and 

certain auxiliary verbs (e.g., do). Previous research has suggested 

that the highly specific style of scientific language increases the 

use of these parts of speech, especially in the sort of definitional 

contexts that we might find in many learning contexts [3]. [29], 

for example, notes that students sometimes struggle with 

prepositions. In fact, this pattern is sometimes referred to as the 

stylistic barrier hypothesis [31], which suggests that differences 

between the language students use at home and the language used 

in the classroom may interfere with the learning process.  

HTML features that that correlate with confusion and frustration 

match findings in the literature. For example, [35] suggest that 

italics are difficult to read, and our findings show that they are 

correlated with higher confusion. Changes in font size, however, 

are associated with lower frustration; it is possible that teachers 

are using changes in font size to clarify visual hierarchy and 

problem meaning.  

Features associated with concreteness (N3.4, N3.3, A2.2, A1.5.1, 

N5+, I1.3, O4.1, T2++) correlate with lowered confusion and 

frustration, matching the literature on the concreteness effect, 

which shows that concrete words are not only processed faster 

than abstract words in many experimentally controlled studies 

[23], the two may operate in separate neurological pathways ([19], 

[5]). These findings are hypothesized to be an artifact of the word-

to-word mapping system the brain uses to process language, 

where concrete words may have stronger ties to more basic 

concepts. Interestingly, [23] have found evidence for similar 

pathways for emotion words, which are acquired early and 

considered quite basic to the human experience. While several of 

the Wmatrix categories that might correspond with [23]’s account 

of emotion words do not appear in this list (E3, E4, X4.1), X2.1, 

described as thoughts/beliefs, has the strongest negative 

associations with both frustration and confusion.  

Other features which correlate with increased confusion and 

frustration may reflect the sort of meta-instructions teachers use to 

support students working with complex mathematical problems. 

Consider, for example, the tags in the following examples:  

(1) You_Z8mf must_S6+ show_A10+ your_Z8 work_I3.1. 

(2) You_Z8mf have_A9+ three_N1 attempts_X8+  

(3) Often_N6+ it_Z8 helps_S8+ to_Z5 write_Q1.2[i1.2.1 

down_Q1.2 [i1.2.2 your_Z8 work_I3.1. 

(4) Keep_A9+ trying_X8+  

(5) Do_X8+[i1.3.1 your_X8+[i1.3.2 best_X8+[i1.3.3 

(6) Do_A1.1.1 the_Z5 difficult_A12- problems_A12- first_N4 
 

Several of these tags (as given in bold, above: I3.1 work; S6+ 

must; Z5 to, the; X8+ attempts, trying; A12- difficult; N6+ often) 

are correlated with increased confusion or frustration. This finding 

may reflect a preemptive scaffolding practice (e.g., teachers 

provide these additional instructions when students are working 

on problem types that they have struggled with in the past). 

However, it is important to rule out other possibilities. For 

instance, such additional instructions could distract or annoy the 

students. More seriously, it could also have priming effects.  

4.1.3 Engaged Concentration & Boredom 
Like confusion and frustration, we see considerable overlap in the 

features correlated with engaged concentration and boredom.  

However, unlike confusion and frustration, these two outcome 

measures are negatively associated with one another. Six of the 

features most negatively associated with concentration (N5-, 

N3.6, Z5, Q2.2, A4.1, and A5.4+) are among those most 

positively associated with boredom. Likewise, four of those most 

positively associated with concentration (A2.1+mwu, A6.1+++, 

T3, and A5.2+) are negatively associated with boredom. 

 

Table 5. Features most strongly associated engaged 

concentration and boredom 

TAG Semantic Description ρ TAG Semantic Description ρ

X2.1 Thought/belief -0.149 X2.1 Thought/belief -0.110

Z6 Negative -0.101 N5+ Quantities -0.070

N3.4 Measurement: Volume -0.097 A11.1+++ Important/Significant -0.063

N3.3--- Measurement: Distance -0.079 N3.4 Measurement: Volume -0.061

N6mwu Frequency of occurance -0.079 A2.2 Cause, Connected -0.056

A2.2 Cause, Connected -0.077 N6mwu Frequency of occurance -0.052

A1.5.1 Using -0.076 X4.2 Means, method -0.051

N5+ Quantities -0.070 T2++ Time: Beginning and ending -0.050

I1.3 Money: price -0.068 A2.1+mwu Modify, Change -0.049

O4.1 General Appearance/Phys'l Properties-0.066  <font>  HTML font adjustment -0.049

Q1.2mwu Paper documents & writing 0.081 I3.1 Work & Employment: generally 0.089

N1 Numbers 0.082 X2.4mwu Investigate/examine/test/search 0.092

I3.2 Work & Employment: professionalism0.083 <span>  HTML span (grouping of items in one line)0.092

Z5 Grammatical bin 0.084 N6+ Frequency of occurance 0.093

A12- Easy/Difficult 0.086 Z5 Grammatical bin 0.105

<em>  HTML italics 0.087 T1.1.2 Time: General: Present; simultaneous 0.116

I3.1 Work & Employment: generally 0.094 T3- Time: Old, new and young; age 0.144

S6+ Obligation and necessity 0.105 X8+ Trying 0.148

X8+ Trying 0.115 A12- Easy/Difficult 0.153

Z5mwu Grammatical bin 0.135 Z5mwu Grammatical bin 0.162

CONFUSION FRUSTRATION



 
 

Interestingly, X2.1 (thoughts/beliefs) is not as closely related to 

boredom and engagement as it was to confusion and frustration, 

but two other features typically associated with language about 

humans show desirable associations with these two outcome 

measures. For instance S5+c (groups & affiliation) is associated 

with increased engaged concentration, while X2 (mental 

actions/processes) is associated with lowered boredom. Likewise 

A8, which tags words related to seem or appear (both mental 

processes typically ascribed to human subjects), also leads to 

lowered boredom.  

These semantic features, along with several others that correlate 

with lowered boredom (T2++mwu time demarcations and 

M6mwu location/direction) may also be indicators that problems 

with greater narrativity improve student engagement. However, 

we must still be cautious about interpreting lower boredom as a 

desirable effect in and of itself, since A5.2+ (words associated 

with true) is also associated with lower boredom. This type of 

item is unlikely to bore students, since they can answer and pass it 

quickly. However, readers may recall that this feature is also 

correlated with lower learning, as one might expect based on 

previous research on True/False questions [42].  

5. DISCUSSION AND CONCLUSIONS 
Our analyses of the ASSISTments corpus complements previous 

research on the relationship between learning and the language of 

mathematics problems, but extends this line of inquiry by 

including educationally relevant behaviors and affective states as 

part of the learning outcomes measured. As discussed, a number 

of linguistic features (e.g., pronouns, mental states, time, and 

concreteness) have been found to be significant in previous work. 

However, we were also able to examine the degree to which these 

relationships reflect expectations about how behavior, affect, and 

learning are related. 

For instance, some of the same features which were correlated 

with learning were also correlated with student frustration and 

gaming the system. While it might be hypothesized that frustrated 

students would be more likely to game the system, there is also 

evidence from within ASSISTments that frustration can be 

important for learning [26]. The MBML model used here is a 

look-ahead algorithm, which may optimize the opportunity to 

identify the problems that trigger learning even when learning 

process is causing student frustration. However, it’s also possible 

that these problems are triggering strong but distinct reactions in 

different students (e.g., students who persist vs. students who 

game the system when they become frustrated). Future work will 

hopefully shed more light on this unusual relationship. 

Overall, these results point to a number of promising avenues for 

further research within the ASSISTments system. One key future 

approach will be to conduct RCTs of the features identified in this 

study, re-designing problems to eliminate problematic features or 

incorporate positive features, in order to determine whether our 

findings can drive enhanced design. At the same time, it will be 

important to explore some of the interactions that may exist 

between different combinations of linguistic features, or between 

linguistic features and other behaviors or actions within the tutor. 

We also found several unusual patterns in our data, such as some 

features being associated with increases in both learning and with 

gaming the system. We believe this may be due to our dataset 

containing two different populations of students – those who are 

persistent in the face of challenging and difficult problems and 

those who are frustrated by these problems and attempt to game 

the system to avoid working through them. We hope to 

understand this relationship in greater detail through RCTs (as 

discussed below). Ultimately, we hope to use our findings to 

construct guidelines for teachers creating their own content in the 

system, which can be embedded directly into the authoring tools 

teachers use, providing useful feedback on their problem design. 

5.1 Randomized Controlled Trials 
Having found a set of features that are associated with differences 

in student engagement and learning, our next step will be to 

conduct a set of randomized controlled trials (RCTs) to test 

whether the effects we found are genuinely causal, and whether 

re-designing problems based on these findings can improve 

student outcomes. By determining which of these features are 

causal, we can expand scientific understanding of learning and 

engagement in online learning systems. By developing methods 

for concretely improving math problems, we can develop better 

guidelines and recommendations for the many instructors (and 

others) developing problems for the ASSISTments platforms. In 

the longer-term, we hope to make all of the problems in the 

ASSISTments platform engaging and educationally effective for 

each of the growing number of students who use ASSISTments to 

learn mathematics and other subjects. 

5.2 Continued Feature Engineering 
Another important area of future work will be to conduct further 

feature engineering, particularly in terms of text features specific 

to the language of mathematics. One of the shortcomings of the 

current study is that the language of mathematics is poorly 

modeled in existing tools. In addition to challenges cause by 

domain or context-specific uses of certain words, many semantic 

taggers rely on syntactic probabilities that may be difficult to 

capture when math problems are interspersed with text. Simply 

developing taggers that can identify embedded mathematics 

formulas (e.g., labeling ‘3+2’ as addition) could help to ameliorate 

this issue. We hope that, by developing more robust tools for the 

analysis of this particular corpus, we will be able to better predict 

and understand learning and engagement.  

As research progresses, features derived from combinations of 

Wmatrix tags will also become important since many of the sub-

categories within and across Wmatrix’s lexical fields may be 

semantically similar enough, or co-occur frequently enough, to 

warrant combining them within ASSISTments data. For example, 

Wmatrix treats deciding as separate from choosing, selecting, and 

picking, but this division may not be useful in mathematics 

learning corpora. Likewise, feature combinations may help to 

contextualize Wmatrix categories that are prone to incorrectly 

categorizing high-frequency words. For example, since many 

TAG SEMANTIC DESCRIPTION ρ TAG SEMANTIC DESCRIPTION ρ

N5- Quantities -0.182 T1.1.2 Time: General: Present; Simultan'us -0.051

N3.6 Measurement: Area -0.178 A5.2+ True/False -0.041

Z5 Grammatical bin -0.165 X2 Mental actions & processes -0.041

Q2.2 Speech Acts -0.162 A2.1+mwu Modify, Change -0.034

A4.1 Generally/kinds/ groups/examples -0.161 M6mwu Location & Direction -0.034

<em>  HTML italics -0.144 T3- Time: Old, new and young; age -0.034

A6.3+ Variety -0.143 A8 Seem/Appear -0.030

A5.4+ Authenticity -0.130 T2++mwu Time: Beginning and ending -0.028

 <p>  HTML paragraph -0.127 A11.1+++ Important/Significant -0.027

Z7 If -0.116 A6.1+++ Similar/Different -0.027

A4.2+ Particular/general; details 0.068 A5.4+ Authenticity 0.059

N3.5 Measurement: Weight 0.069 Z8c Pronouns etc. 0.061

N3.1 Measurement: General 0.074 A6.3+ Variety 0.063

S5+c Groups and affiliation 0.074 N1 Numbers 0.076

A2.1+mwu Modify, Change 0.075 S6+ Obligation and necessity 0.076

A6.1+++ Similar/Different 0.077 N5- Quantities 0.078

T3 Time: Old, new and young; age 0.082 Q2.2 Speech Acts 0.083

A2.1+ Modify, Change 0.083 A4.1 Generally/kinds/ groups/examples 0.085

Y1 Science/technology general 0.112 Z5 Grammatical bin 0.086

A5.2+ True/False 0.115 N3.6 Measurement: Area 0.093

ENGAGED CONCENTRATION BOREDOM



features in this study are highly correlated with M1,  combinations 

involving this tag may be used to differentiate its use in 

instructions to students (e.g., “You have 3 attempts left”) from its 

use in physical descriptions related to geometry (e.g., “Jill turns 

left and walks 3 more miles.”).  

5.3 Directions for Future Work 
In this paper, we discovered relationships between semantic 

elements of text in the ASSISTments system and learning, 

affective, and behavioral student outcomes. In doing so, this work 

contributes to the emerging body of research studying the design 

of mathematics problems at scale.  

Our findings show that a large number of semantically meaningful 

relationships exist, some of which correlate with a wide range of 

learner outcomes. These features provide insights that will help to 

develop guidelines for effective problem designs in ITSs. 

However, the existing suite of tools available for large scale 

textual analysis may not be optimal for tagging the specialized 

language of mathematics found in the ASSISTments system. Thus 

an additional area for future work includes the development of 

semantic taggers that are more appropriate for mathematics 

corpora. These efforts will help us to better understand how the 

linguistic properties of math problems influence student success at 

scale. In turn, by exploring potential relationships between 

persistence and student perceptions of challenge, we can work to 

design mathematics problems that are both more informative and 

more engaging.  
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